Search results for "Computational photography"
showing 7 items of 7 documents
Improvement of two-dimensional structured illumination microscopy with an incoherent illumination pattern of tunable frequency.
2018
In two-dimensional structured illumination microscopy (2D-SIM), high-resolution images with optimal optical sectioning (OS) cannot be obtained simultaneously. This tradeoff can be overcome by using a tunable-frequency 2D-SIM system and a proper reconstruction method. The goal of this work is twofold. First, we present a computational approach to reconstruct optical-sectioned images with super-resolution enhancement (OS-SR) by using a tunable SIM system. Second, we propose an incoherent tunable-frequency 2D-SIM system based on a Fresnel biprism implementation. Integration of the proposed computational method with this tunable structured illumination (SI) system results in a new 2D-SIM system…
Algorithms for transforming an integral photography into a plenoptic picture
2013
We report a simple algorithm for transforming the set of elemental images captured with an integral-photography set up, into the set of micro-images ready to be projected into an integral-imaging monitor. The method is based in the transposing relation between an integral photography and a plenoptic picture. The reported technique permits to adapt the integral images to the resolution and size of the monitor.
Compressive imaging in scattering media.
2015
One challenge that has long held the attention of scientists is that of clearly seeing objects hidden by turbid media, as smoke, fog or biological tissue, which has major implications in fields such as remote sensing or early diagnosis of diseases. Here, we combine structured incoherent illumination and bucket detection for imaging an absorbing object completely embedded in a scattering medium. A sequence of low-intensity microstructured light patterns is launched onto the object, whose image is accurately reconstructed through the light fluctuations measured by a single-pixel detector. Our technique is noninvasive, does not require coherent sources, raster scanning nor time-gated detection…
Integral Imaging Monitors with an Enlarged Viewing Angle
2015
Enlarging the horizontal viewing angle is an important feature of integral imaging monitors. Thus far, the horizontal viewing angle has been enlarged in different ways, such as by changing the size of the elemental images or by tilting the lens array in the capture and reconstruction stages. However, these methods are limited by the microlenses used in the capture stage and by the fact that the images obtained cannot be easily projected into different displays. In this study, we upgrade our previously reported method, called SPOC 2.0. In particular, our new approach, which can be called SPOC 2.1, enlarges the viewing angle by increasing the density of the elemental images in the horizontal …
SNAPSHOT SPECTRAL AND COLOR IMAGING USING A REGULAR DIGITAL CAMERA WITH A MONOCHROMATIC IMAGE SENSOR
2017
Spectral imaging (SI) refers to the acquisition of the three-dimensional (3D) spectral cube of spatial and spectral data of a source object at a limited number of wavelengths in a given wavelength range. Snapshot spectral imaging (SSI) refers to the instantaneous acquisition (in a single shot) of the spectral cube, a process suitable for fast changing objects. Known SSI devices exhibit large total track length (TTL), weight and production costs and relatively low optical throughput. We present a simple SSI camera based on a regular digital camera with (i) an added diffusing and dispersing phase-only static optical element at the entrance pupil (diffuser) and (ii) tailored compressed sensing…
Three-Dimensional Imaging and Display through Integral Photography
2014
Here, we present a review of the proposals and advances in the field of three-dimensional (3D) imaging acquisition and display made in the last century. The most popular techniques are based on the concept of stereoscopy. However, stereoscopy does not provide real 3D experience, and produces discomfort due to the conflict between convergence and accommodation. For this reason, we focus this paper on integral imaging, which is a technique that permits the codification of 3D information in an array of 2D images obtained from different perspectives. When this array of elemental images is placed in front of an array of microlenses, the perspectives are integrated producing 3D images with full p…
Computational imaging with a balanced detector
2016
Single-pixel cameras allow to obtain images in a wide range of challenging scenarios, including broad regions of the electromagnetic spectrum and through scattering media. However, there still exist several drawbacks that single-pixel architectures must address, such as acquisition speed and imaging in the presence of ambient light. In this work we introduce balanced detection in combination with simultaneous complementary illumination in a single-pixel camera. This approach enables to acquire information even when the power of the parasite signal is higher than the signal itself. Furthermore, this novel detection scheme increases both the frame rate and the signal-to-noise ratio of the sys…